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A New Class of Non-Linear, Finite-Volume
Methods for Vlasov Simulation

Jeffrey W. Banks and Jeffrey A. F. Hittinger

Abstract—Methods for the numerical discretization of the
Vlasov equation should efficiently use the phase space discretiza-
tion and should introduce only enough numerical dissipation
to promote stability and control oscillations. A new high-order,
non-linear, finite-volume algorithm for the Vlasov equation that
discretely conserves particle number and controls oscillations is
presented. The method is fourth-order in space and time in well-
resolved regions, but smoothly reduces to a third-order upwind
scheme as features become poorly resolved. The new scheme
is applied to several standard problems for the Vlasov-Poisson
system, and the results are compared with those from other finite-
volume approaches, including an artificial viscosity scheme and
the Piecewise Parabolic Method. It is shown that the new scheme
is able to control oscillations while preserving a higher degree of
fidelity of the solution than the other approaches.

Index Terms—Vlasov equation, plasma simulation, finite-
volume methods.

I. INTRODUCTION

The Vlasov equation is a fundamental kinetic model for low-
density, high-temperature plasmas typical of many plasmas of
interest. Because this model expresses the particle distribution
as a function of time, particle location, and particle velocity,
direct discretization methods are extremely expensive; the
computational cost increases geometrically with dimension.
Thus, stochastic Particle-In-Cell (PIC) methods [1] have been
the dominant Vlasov simulation technique. Continuum (or
Eulerian) discretizations of Vlasov are still useful in a com-
plementary role to PIC, since the continuum approach can
provide information where the inherent noise of PIC may mask
physical effects.

Development of continuum discretization techniques for
the Vlasov equation has not received the attention it de-
serves, perhaps because available computer resources have
been insufficient to simulate meaningful multidimensional
problems. Much work that has been done has focused on
the dimensionally-split, semi-Lagrangian approach, with a
variety of spline or spectral interpolants [2], [3], [4] used.
Shortcomings of this approach include the lack of discrete
conservation, the occurrence of unphysical oscillations in the
solution, and the generation of negative values in the positive-
definite solution. Several variations of the semi-Lagrangian
approach have been developed to address these numerical
difficulties [5], [6], [7], [8], [9]. Nevertheless, in the modern
era of massively parallel computing, one of the primary
advantages of the semi-Lagrangian approach - the lack of a
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stability restriction on the time step used - is diminished by
the fact that domain decomposition favors local schemes of
compact support. Furthermore, split algorithms are inherently
task serial, whereas unsplit algorithms are more amenable to
task parallelization on multicore processors.

In the last decade, as increased computer power has enabled
Vlasov simulation in higher-dimensions, attention has been
drawn towards discretization methods developed in the applied
mathematics and engineering communities for hyperbolic
systems. Examples include finite-element [10] and pseudo-
spectral methods [11] that allow for adaptive mesh refinement,
as well as finite-volume methods from compressible gas dy-
namics [12], [13], [14]. In related work, 5D gyrokinetic core
codes have been developed using low- and high-order, linear
finite-difference schemes [15], [16], [17].

A very promising class of such algorithms are the flux-
based, higher-order, non-linear finite-volume schemes [18],
[19], [20] that can enforce conservation, monotonicity, and,
with further modification, positivity; at least one 4D Vlasov-
Maxwell code based on the Piecewise Parabolic Method
(PPM) has been developed [14]. Additional advantages of
these finite-volume approaches are that they can easily be
extended to higher-order in both space and time and that they
naturally fit within the framework of adaptive mesh refinement
(AMR). Both higher-order and AMR can be used to reduce
the cost of continuum Vlasov simulation. However, non-
linear finite-volume methods have disadvantages for Vlasov
simulation as well, most notably, a potentially severe stability
restriction on time step size and increased computational cost
due to the oscillation control.

In this paper, we present a new class of non-linear finite-
volume schemes that attempt to balance these trade-offs.
The new approach is based on the higher-order finite-volume
framework developed in [21], [22] and has certain similarities
with the more standard WENO approach. However, this new
scheme is optimized more for Vlasov solutions than for the
shock-capturing applications for which PPM and WENO were
originally developed. The result is a scheme that does an excel-
lent job of preserving order while adding sufficient dissipation
to control unphysical oscillations. An optional addition to the
algorithm based on multidimensional flux-corrected transport
(FCT) algorithm [23] can be used to self-consistently enforce
distribution function positivity [21].

In the next section, we briefly describe the Vlasov-Poisson
system we use as our model problem. We then present
the generic formulation of the fourth-order, finite-volume
discretization. In Section III, we discuss the challenges of
Vlasov simulation within the context of the numerical analysis



of methods for hyperbolic partial differential equations and
follow with a discussion of traditional fixes to these problems.
We then describe the new algorithm in full detail, and in
Section VII we present the results of comparative numerical
studies using the new algorithm.

II. GOVERNING EQUATIONS AND MODEL PROBLEM

Because the purpose of the present work is to describe a new
algorithm and demonstrate its performance, it is appropriate
to describe a simple physical model. Consider a collisionless
quasi-neutral plasma in one space and one velocity dimension
where the ions have been assumed to be stationary. As a further
simplification, assume that we are in the non-relativistic, zero-
magnetic field limit. For this case, the well-known Vlasov-
Poisson system (1)-(3) describes the evolution of the electron
distribution function f(z,v,t) in phase space (z,v):
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In equations (1)-(3), v is the velocity, = is the physical
coordinate, ¢ is time, ¢ is the electric potential, and F is the
electric field. We have chosen units such that the electron mass
and charge are unity.

We investigate problems on the periodic domain x &€
[-L,L] with initial conditions f(z,v,0) = fo(z,v). The
domain is artificially truncated in the v direction at some
location vp,,x, and an appropriate outflow/inflow condition is
applied. Note that periodicity and (3) imply that

/LL/(:f(x’U»t)dvdx_l

for all time. Exact specifications of the initial conditions as
perturbations of Maxwellian distributions will be provided as
needed.

III. MOTIVATING EXAMPLE

In the context of numerical approximation, two prevalent
features of Vlasov systems deserve special consideration. The
first of these is the fact that the system is non-linear. Although
the fourth-order Runge-Kutta integration scheme (RK-4) we
adopt here is slightly dissipative, that dissipation is insufficient
to stabilize the centered spatial approximations when used for
the simulation of sufficiently non-linear problems [24]. The
question of whether the Vlasov systems of interest are in this
class is not proved, but practical experience indicates quite
strongly that additional dissipation of some kind is required,
while respecting certain conservation properties. The second
feature to which we need to pay heed is the shearing nature
of the solutions. By this we mean that because the spatial
advection velocity is the velocity coordinate, structures present
in the initial conditions will tend to shear and become thin as
time progresses.
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Fig. 1. Examples showing the need for artificial viscosity. Plotted is the
distribution function f(x,v,t) at time ¢ = 45 computed using Ny = N, =
64 (left) and Ny = N, = 2048 (right).

These two features are demonstrated using a fwo-stream in-
stability problem using the parameters from [4] but a stronger
initial spatial perturbation. The initial distribution function
used here is given by

feton= 22 (o) e ().

and the domain is given by L = 27 and vpmax = 6.
Figure 1 presents numerically computed results using the
linear, centered scheme of Section V. Shown are a coarse
simulation (N, = N, = 64) and a finely resolved simulation
(N, = N, = 2048) at the same time ¢t = 45. Both results
capture, at some level, the broad dynamics of the problem, but
for both cases the approximations exhibit erroneous numerical
oscillations. These are caused by some combination of fine
scales in the exact solution and the inherent non-linearity of
the governing system. Notice further that for both simulations
the electron number density drops significantly below zero.
These results serve to demonstrate that poor behavior can be
exhibited by schemes using purely central spatial discretiza-
tions for this type of non-linear problem.

IV. POSSIBLE FIXES

Numerical analysis informs us that most low-dissipation
linear discretizations applied to variable-coefficient and non-
linear hyperbolic problems will eventually generate spurious
oscillations and often become unstable [24]. The problem
arises from the nature of the continuous solutions that typ-
ically generate finer and finer scales, and an accurate discrete
approximation will do the same. Thus, the discrete operator
eventually generates scales unresolvable on the mesh and
oscillations are produced. From a spectral perspective, the
energy in unresolvable modes is aliased to resolvable modes.

Since the earliest days of numerical simulation, researchers
have wrestled with this problem. The generation of oscil-
lations is a signal that the solution is under-resolved, and
one philosophy is that the computation should be terminated
or a finer mesh used. This is often impractical, and if the
under-resolved scales have little influence on the goal of the
calculation, increasing the resolution would be wasteful. Many
other approaches have emerged, and the commonality is that
these methods attempt to remove energy either directly or
indirectly from under-resolved scales through some sort of
dissipation. The trade-off is that the accuracy of some scales
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Fig. 2. Distribution function f(z,v,t) at time ¢ = 45 for the two-stream
instability problem using the mesh N, = N, = 64 and the centered scheme
with artificial viscosity (left) and PPM (right).

resolvable on the grid is sacrificed. Thus, while each of these
“fixes” can be posed such that particle number is conserved
to round-off error, all other conserved quantities are accurate
only to within truncation error.

The simplest solution is to add a linear dissipative term
to the discretization in the form of an artificial viscosity or
hyperviscosity [24]. Precise forms are known that guarantee
stability [24]. However, there are drawbacks to this approach.
First, the linear viscosity term is always active and so con-
tinuously damps all modes in the solution, which can even
smear well-represented profiles. In addition, high-derivative
hyperviscosity terms are required to achieve higher-order,
but discretizations of higher derivatives are often not robust.
Finally, the method introduces an adjustable coefficient on
which the discrete solution depends.

A related approach from spectral discretizations are de-
aliasing [25, §11.5] or direct filtering [5]. Here, the coefficients
of a predetermined set of the high-wavenumber modes is
zeroed out at the end of each time step. Effectively, energy
that naturally flows into these modes is artificially removed
from the system.

Shock-capturing methods are a somewhat different class
of schemes that have been developed in computational com-
pressible fluid dynamics. A well-known theorem [26] states
that linear, monotone algorithms for hyperbolic equations
will be at most first-order. To achieve higher-order, shock-
capturing approaches non-linearly adapt the stencil and order
of the discretization in order to obtain monotone or nearly
monotone solutions. Standard methods include flux-limiting
methods of the Flux-Corrected Transport (FCT) type [23],
[27] and geometric approaches based on limiting conserva-
tive interpolations within cells, such as the piecewise linear
MUSCL scheme [28] and the PPM scheme [18]. Results
using a method-of-lines variant of the PPM scheme [22] are
shown in Figure 2. In a method-of-lines approach this scheme
is fourth-order accurate in space and, for our RK-4 time
discretization, is fourth-order accurate in time. A difficulty
with these methods is that, because they are optimized for
shock-capturing, they all reduce to first-order in regions where
the solution is under-resolved and typically also at solution
extrema, although recent work has tried to minimize extrema
clipping [19].

Other  geometrically-inspired
(weighted) essentially non-oscillatory

the
[20]

schemes include
((W)ENO)

methods. These methods do not guarantee monotonicity, but
they are higher-order, do not clip extrema, and do a reasonable
job of minimizing oscillations, even around a discontinuity.
Schemes of this type adapt their stencil in order to obtain
the smoothest interpolant of the data. In the standard upwind
formulation, WENO schemes select a computational stencil as
a weighted combination from a collection of upwind-biased,
lower-order stencils, e.g. a fifth-order discretization in smooth
regions composed of three third-order stencils. On the other
hand, switching from from central to upwind stencils may
have advantages if the goal is to switch from a dissipationless
difference to a difference with implicit numerical dissipation.
It is this fact that leads to our new approach in Section VI.

Before proceeding, however, we will make one final point
about positivity. Unphysical oscillations are the most obvi-
ous cause of non-positive solution values. However, merely
controlling oscillations does not guarantee solution positivity,
particularly in multiple dimensions. Again, theory demon-
strates that there are no linear schemes above first-order that
preserve solution positivity [26], and the non-linear oscillation-
controlling schemes above do not by themselves guarantee
positivity. To retain positivity, one must appeal to some other
mechanism. By far, the most common approach is to floor
non-positive values to zero; this technique is neither consistent
with the governing equations nor is conservative.

Alternatively, as discussed in [21], a consistent, conserva-
tive correction to enforce solution positivity can be formu-
lated using FCT. Specifically, Zalesak’s multidimensional FCT
scheme [23] allows for the imposition of constraints on the so-
lution other than monotonicity. In this usage, the multidimen-
sional FCT scheme limits base-scheme fluxes with positivity-
preserving fluxes just enough to guarantee the updated solution
is positive definite. Any base-scheme fluxes can be used,
including fluxes previously limited by other means; the proce-
dure works with all of the linear and non-linear discrete fluxes
discussed in this paper. Thus, this FCT approach decouples the
issues of oscillation control and positivity preservation, while
the flux-based form ensures consistency and conservation.

We mention the FCT positivity-preservation procedure here
for completeness. We have made successful use of the ap-
proach in practice with all of the methods presented in this
paper. However, the intent of this manuscript is to focus on
the properties of our new oscillation-suppressing scheme in
contrast to other common methods. In the interest of space, and
since the FCT positivity-preservation procedure is independent
of the choice of base-scheme flux, we have elected to include
no results using the FCT algorithm in this paper. The interested
reader is referred to [21] for some comparative results of the
FCT scheme for positivity preservation.

V. BASIC NUMERICAL METHOD

Our basic finite-volume discretizations follows the approach
in [21], [22]. Let us rewrite the Vlasov equation (1) in flux-
divergence form:

0
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where the phase-space flux vector is F' = (F,,F,) = af,
the phase-space velocity vector is a = (v,—F), and the
divergence is with respect to & = (z,v). We construct a
uniform Cartesian partitioning of phase space into control
volumes,
1 1 1 1
= lt— =i+ = A — =, 7+ = | Av.

Vi [z 214—2] xx[g 2]—1—2] v
Integrating (5) over one such control volume and dividing by
the volume AzAv, we obtain the exact system of ordinary
differential equations

d - 1
@’ = T Auae /V Ve Fdrdv,
1
_ 6
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where the cell average fij is defined to be

- 1
= dd,
Tis AxAv/Vijfxv

and the angle braces denote face averages, for example,

1 Vj+1/2
<Fx>i+%,j = ﬂ/ F(zit1/2,v)dv.
Vj—1/2
The face-averaged fluxes can be approximated by the products
of other face-averaged quantities and transverse derivatives by
using Taylor series expansions. Define the second-order central
difference operators Dyu;; = U1, — Ui—1,; and Dyu;; =
U; j+1 — Us,j—1. Then, to fourth-order,

1
<Fw>i+%,j ~ <’U>i+%,j<f>i+%,j + @Dv<f>i+§,j,
(Fo)ijas = —(E)ijy1(fijss
1
- @Dm<E>i,j+§Dx<f>i,j+%~

Relating the face averages of a and f to cell averages of
the same quantities completes the spatial discretization. For
comparison in subsequent sections, the baseline linear, central,
fourth-order approximation is used, e.g.,

7, - _ 1 - _
(Figi; = D) (fij + firrj) — 2 (fic1j+ fivz) - D

One variant we use for comparison is the addition of a
linear, artificial viscosity (AV) that adds O(Az*) and O(Av?)
dissipation to the truncation error, that is,

AV
<f>i+%,j = <f>i+%,j

— pAz [fizo; — 3(fivry — fij) — fimr4]
with a constant g > 0; the form is similar for wv-faces.
A choice of y© = 0.1 performs reasonably well for the
problems considered in this paper. When differenced in flux-
divergence form (6), the additional terms (8) approximate
fourth-derivatives of the solution in each coordinate direction.
We will also compare with the non-linear, method-of-lines
PPM scheme described in detail in [22]. The choice of the face

average approximation is what distinguishes our new scheme
from previous work.

®)

To compute the phase-space velocity, we require velocity-
face-averages of the electric field; these are equivalent to the
configuration-space cell-averages of the electric field com-
puted by solving the potential equation. The instantaneous
cell-averaged electric field are to fourth-order:

1 y n - —
~ Toig BB = 6im1) = i — bia]

In configuration space, we average (3) over each configuration-

space cell V;:
1 ?¢(x,t) _
Ax/vi Tz =l

Discretely, we construct a nearly pentadiagonal system from
the stencil

30¢; — 16(pit1 + di—1) + (dira + Pi2) = 12Azp;, (9)

which gives a fourth-order approximation of the cell averaged
potential. The resulting linear algebra problem can be LU-
decomposed once at the beginning of a run and stored. Periodic
boundary conditions in z lead to a singular system, which is a
well-known problem that can be handled by projecting out the
portion of p(z) residing in the null space of the matrix. This
amounts to ensuring that ). p(x;) = 0, and in so doing, we
ensure that ¢(z) is normalized around zero. Of course, since
we take a derivative of ¢(z) to get E(x), the offset has no
effect on the solution.

The cell average of net charge density is computed in this
finite-volume formulation:

p(z,t) :1_/:” f(z,v,t)dv,
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The last approximation occurs in any non-infinite discretiza-
tion basis; we adopt the standard approach of truncating the
velocity domain to |[v| < vyax, Where the number of particles
beyond this domain is treated as negligible.

For the temporal discretization of the semi-discrete Vlasov
equation (6), any stable method can be used. We do not have
competing time scales in this problem, so as in [22], we
choose the standard explicit fourth-order Runge-Kutta scheme.
At each stage in the Runge-Kutta update, we solve the discrete
potential equation (9) prior to evaluating the phase-space flux
divergence as given by the right-hand side of (6).

VI. A NEW NUMERICAL METHOD

We wish to devise a numerical method that has the property
that, for well-represented solutions, the fourth-order, centered
approximation (7) is used, but that introduces numerical dis-
sipation when solution features cannot be represented on a
given mesh. We take the stance that a suitable viscosity is
provided by the third-order, upwind approximation, and our
goal is to derive a solution-dependent switch to transition
smoothly between the fourth order central and third order
upwind fluxes. As an additional design criteria, we seek to
preserve the discretization stencil of the centered, fourth-order
approximation.



We focus on the determination of the face average Fj 1 ;;
the other face averages are determined in a similar manner.
We suppress mention of the time step for clarity. Similarly to
the WENO method [20], we compose the face reconstruction

as a weighted sum of third order approximations:

(Flivig R w5 o(F)ivs jrtwips jr(F)iys gk, (10)

with
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Here (F);,1 ;1 and (F); 1 ; p are third-order approxima-
tions of the face average with “L” and “R” indicating data
biased to the left or right respectively. Define the ideal weight
d = 5 such that for w1 ;1 = w1k = d, equation (10)
reduces to the centered fourth order approximation.

Focusing on the stencil associated with F; 4140, We define
the polynomial
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with
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Here n = x — x; measures distance from x;. A smoothness
indicator in a symmetric interval about z; +1 is given by
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This is more concisely written as
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Similar reasoning for the right stencil yields
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Define approximate stencil weights as
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d
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for k = 1,2 and ¢ a small parameter (typically e = 1 x 10749),
As with traditional WENO schemes, convergence rates
near certain types of critical points (points with many zero
derivatives) may be less than optimal. A detailed discussion of
these issues is presented in [29]. As in that work, we perform a
mapping of the weights in order to regain optimal convergence
rates whenever possible. For our fourth order implementation,
the mapping suggested in [29] can be re-written

. 3. . 1
bivi ik = Wirl jk 1 T Wil ik | Wirl e — 3) )
The final formula for the weights is then

bi+é7j,k
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Wit 1,5,k bt on + birs o (16)
Note that we have not associated the weights with either
stencil.

The two weights (16) provide a quantitative measure of
the degree to which the solution can be represented on the
grid. More specifically, the weights define how well the two
third-order approximations represent the solution. For smooth
flows, they both converge to the ideal weight d = % as
O(Az?), and so, in terms of accuracy, it makes no difference
which stencil receives which weight. In order to maximize the
upwind diffusion in the final numerical method, we choose the
larger weight for the upwind, third-order approximation and

the smaller weight for the downwind, third-order stencil. Thus,

. WitdjL max (W 1 ;1)
if Vil > 0), )
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Wit§,45.L ming (Wi 4 ;)
else
W15 p = maxgp(wiys ;)

17)
The resulting scheme converges at fourth order for smooth
flows and uses the same stencil as the linear fourth order
algorithm, but introduces an upwind artificial viscosity when
the flow features become sharp. Our choice of weights is
distinct from the traditional WENO approach, where the
weighting is done to favor the smoothest interpolant, even if
it is an unstable, downwind approximation.

We return to the two stream example shown in Figures 1
and 2 using the new scheme. The results for N, = N,, = 64
and N, = N, = 2048 are shown in Figure 3. The effectiveness
of the proposed scheme is clear as these results lack the
numerical oscillations which characterize the purely centered
results of Figure 1. At the same time the scheme captures the
relevant features of the solution that are representable on the
given computational domain. Notice that for N, = N, = 64,
the solution displays many of the features of the finely
resolved computation, even capturing the trapping regions near
(£2,F3); this is not seen in either the artificial viscosity or
PPM solutions in Figure 2.

To demonstrate the convergence properties of the new
method, we consider results for a variable-coefficient advec-
tion problem using a manufactured solution. Such an example



Fig. 3. Distribution function f(z,v,t) at time ¢ = 45 for the two-stream
instability problem. At left are results with N; = N, = 64 and at right with
Nz = N, = 2048.

Fig. 4. Error in the manufactured solution using /N = 160 for the centered
scheme (top left), new scheme (top right), artificial viscosity (bottom left),
and PPM (bottom right). Note the larger errors from the artificial viscosity
scheme and the noisy error signature of the PPM method.

exercises all the terms in the new algorithm and has a known,
smooth exact solution. We solve

0f , dwf) | vaf) _ U | 9(ul) | 0ual) o
ot 0x1 0xo ot 0x1 0xo
where
v1 = agsin(2mxy) cos(2mza) + v10,
ve = agsin(2mxq)sin(2wxs) + va,0,
U = azsin(2nz)sin(2nzs) cos(2nt) + fo,
and a; = 0.1, az = 0.2, az3 = 0.3, v10 = 1.0, voo = 0.9,

and fo = 0.8. Note that the right hand side of (18) forces
the solution in such a way that f = U is the solution to
equation (18). Figure 4 shows the error for the various schemes
using N = 160. Table I shows convergence results for a series
of resolutions.

A number of salient points can be made using this example.
First, all schemes achieve the optimal fourth order convergence
by N = 80. Second, we note that the new scheme becomes

[N [ centered [ AV [ PPM [ new |
5 3.33e—2 3.45e—2 3.97e—2 3.89¢e—2
10 3.44e—3 | 4.12e—3 3.36e—3 3.44e—3
20 2.39e—4 2.80e—4 2.91e—4 2.39¢e—4
40 1.63e—5 1.93e—5 2.18e—5 1.63e—5
80 1.03e—6 1.21e—6 1.43e—6 1.03e—6
160 6.41e—8 7.53e—8 9.14e—8 6.41e—8
320 4.00e—9 | 4.70e—9 5.65e—9 | 4.00e—9
TABLE 1

CONVERGENCE OF MAXIMUM POINTWISE ERROR FOR MANUFACTURED
SOLUTION WITH VARIOUS SCHEMES. A RATIO OF 16 BETWEEN
SUCCESSIVE ERRORS INDICATES FOURTH-ORDER CONVERGENCE.

virtually indistinguishable from the centered scheme at mod-
erate resolutions, but provides sufficient non-linear viscosity
when needed. Third, the mixing between low and high order
in the new scheme is based on smooth, high-order-accurate
smoothness indicators, and so the error is smooth. The error is
not smooth for the PPM scheme, which uses hard switches to
preserve accuracy near extrema; hard switches, also a feature
of ENO schemes, tend to produce “noisy” errors.

VII. ADDITIONAL NUMERICAL RESULTS

In order to more clearly understand the character of the
proposed scheme, we apply it to a number of well known test
problems from the literature.

A. Landau Damping

We begin with the Landau damping problems [30, §8.6]
with the initial distribution function given by

P e () (e een(3). 09

as specified in [4], [12]. We take the domain with L = 2,
Umax = 2m. The parameter « defines the problem, with
o = 0.01 often called “linear” and o = 0.5 “non-linear”. For
the weaker case with o = 0.01, the non-linear effects in the
problem are negligible at early times, and so the use of a non-
linear scheme is unnecessary. As such, the desired behavior is
that the oscillation-controlling methods produce results similar
to those of the original centered scheme. Figure 5 shows the
magnitude of the first and tenth Fourier modes of the electric
field as well as a reference line indicating the analytic decay
rate for the magnitude of the first Fourier mode. For the linear,
PPM, and new schemes, the resonant frequency is computed
to be w = 1.4155 over the first twelve periods; the theoretical
value is 1.4157. The resonant frequency from the artificial
viscosity scheme varies between w = 1.4155 and w = 1.4661
over the first twelve periods.

The artificial viscosity scheme also sits apart from the others
in that it continually damps the solution, which eliminates
the well-known recurrence phenomenon; note that the decay
rate gradually departs from the analytical result as it becomes
dominated by artificial damping. The centered scheme, the
new scheme, and the PPM scheme behave in a similar way
for the leading mode, however their treatment of the tenth
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Fig. 5. Magnitude of the first (blue) and tenth (red) Fourier modes of the
electric field for the Landau damping problem with o« = 0.01. Also shown
is a reference line indicating the theoretical decay rate of the first mode,
v = —0.1553. The results were computed on the mesh N, = N, = 64
using the centered scheme (top left), the new scheme (top right), the centered
scheme with artificial viscosity (bottom left), and PPM (bottom right).

mode is somewhat different. The non-linearity of the non-
linear schemes pushes energy into higher modes, even in the
early-time, linear phase of the problem, and the PPM scheme
transfers more energy than the new scheme. The original
(linear) centered scheme shows no growth in the higher mode
initially, but at longer times, the non-linearity of the Vlasov-
Poisson system begins to transfer energy to higher modes.
Unlike the (linear) artificial viscosity scheme, the centered
scheme has too little dissipation to damp high-wavenumber
modes, and the energy in higher modes will continue to grow,
most likely causing instability.

For the Landau damping problem with a = 0.5, the non-
linearities in the problem will pose difficulties for the central
scheme similar to those shown for the motivating two stream
problem in Figure 1. In fact, this type of strongly non-linear
example is the primary motivation of our investigation of
non-linear limiting algorithms. The desired effect for this test
problem is for the method to allow the representable non-linear
features to grow but to provide sufficient damping to ensure
overall algorithmic stability even at late time.

Figure 6 shows computed approximations at low resolution
(N, = N, = 64) and late time (¢ = 140) and serves
to demonstrate the need to include some form of artificial
dissipation for this type of problem. It is clear that there
is little of practical value that can be determined from the
purely centered scheme (note that the full range of variation
[—0.14, 0.65] is not visible with the unified color map), while
the linear artificial viscosity scheme has essentially smeared
any coherent structures in the problem. On the other hand, the
two non-linear schemes, are able to capture the representable
features in the problem; our new scheme does so with slightly
better fidelity.

Figure 7 demonstrates this point by comparing the spatially
averaged distribution functions of the coarse simulations with
a more finely-resolved simulation computed using the new

Fig. 6. Distribution function f(z,v,t) at ¢t = 140 for the strong Landau
damping problem with « = 0.5. The results were computed on the grid
Nz = N, = 64 using the centered scheme (top left), new scheme (top right),
the centered scheme with artificial viscosity (bottom left), and PPM (bottom
right). Note that the range of variation for the unphysically oscillating solution
using low-dissipation linear scheme is actually [—0.14, 0.65], so extrema have
been clipped by the choice of color map. The new scheme does the best job
capturing the trapping regions near v = +2.
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Fig. 7. Average distribution functions for the strong Landau damping problem
at t = 30 (top) and ¢ = 140 (bottom). The plots on the right include
only the first 32 Fourier modes from the finely-resolved solution and are
an enlargement near the shoulder in the distribution function to better show
details.
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Fig. 8. Magnified region of the distribution function f(z, v, t) at time t = 45
for the two-stream instability problem using the mesh N, = N, = 2048 and

the new scheme (left) and the artificial viscosity scheme (right). Note the grid-
mode oscillations in the center of the plot on the right.

scheme with N, = N, = 1024 at t = 30 and ¢t = 140.
Clearly, the fine scale structures in the problem will not be
visible on the coarse mesh, and so for the zoomed-in plots on
the right, we compare with only the fist 32 Fourier modes of
the finely-resolved simulation. The artificial viscosity scheme
clearly adds too much overall dissipation to the solution. At the
early time ¢t = 30, the centered scheme and the new scheme
are in good agreement, while the PPM scheme captures more
of the variation but with greater amplitude error. At the later
time, the centered scheme contains unacceptable unphysical
oscillations. The PPM scheme and the new scheme, however,
capture the general features of the smoothed, high-resolution
solution with the new scheme generally showing slightly better
agreement.

B. Two-Stream Instability

We return briefly to the motivating example of Section III.
Throughout the results, we have mentioned that the artificial
dissipation scheme is overly dissipative. One logical response
would be to decrease the tunable dissipation coefficient p; the
choice of such an algorithmic knob is always open to debate.
However, Figure 8 shows the same computation as shown in
Figure 3, but in a zoom near the origin, and compares the
new scheme to the artificial viscosity scheme. Throughout this
paper we have taken a constant value for the artificial viscosity
parameter, and, in Figure 8, one can see that this choice is
actually insufficient to suppress all numerical oscillations in
the approximation at very high resolution. In the figure, note
the unphysical, high-wavenumber oscillations in the artificial
viscosity results near the top and bottom of the trapping region
that are not present in the new scheme. Although small in
magnitude, these oscillations show that our choice of the
artificial viscosity parameter is not too high but is, rather, too
small. In general, the choice of parameter is error prone and
represents a severe disadvantage to linear artificial dissipation.

Finally, for quantitative comparison, we consider another
variation of the two-stream instability problem with the initial
distribution function given by

f = fi(v) (1 +0.0005cos (0.2z)) ,

with
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Fig. 9. Magnitude of the first Fourier mode of the electric field for the two-
stream instability problem with v = 0.5 (blue) and v; = 0.0625 (red). Also
shown is a reference line indicating the theoretical growth rate of the first
mode, v = 1/\/§ The results were computed on the mesh N = N, = 64
using the centered scheme (top left), the new scheme (top right), the centered
scheme with artificial viscosity (bottom left), and PPM (bottom right).

where vy = 5v/3/4. The domain is defined by L = 57 and
Umax = 8, and we use N, = N,, = 64. Linear theory [30, §9.3]
for cold distributions predicts a maximum growth rate of v =
1/ v/8 ~ 0.354 will occur for mode k = 0.2. Since we cannot
represent delta functions discretely, we instead choose vy =
1/2 and 1/16 to observe the behavior as the initial distributions
become narrower.

The results are plotted in Figure 9. We see that, for all
schemes, the agreement is reasonable given the finite-width
distributions and the asymptotic nature of the theoretical
prediction. For all schemes except PPM, as we decrease the
width of the initial streams, the growth rate increases towards
the theoretical maximum value. We believe that the lack
of change in the PPM scheme is due to its more severe
reduction in order for poorly-resolved features leading to
enhanced numerical damping. The new scheme does not have
this problem, and in fact comes closest to the theoretical
value: linearly extrapolating to the zero-width limit from the
growth rates in the time range 20 < ¢ < 30, the zero-width
growth rates are 0.178, 0.180, and 0.209 for the linear, artificial
viscosity, and new schemes, respectively.

C. Bump-on-Tail Instability

As a final example, we address the bump-on-tail instabil-
ity [30, §9.4] using the parameters specified in [4], [12]. The
initial distribution function is given by

f=fo(v) (1 +0.04cos(0.3x)),

with
2
fr(v) = \3% exp (—2) + \2% exp (—4(v — 4.5)2).

The domain is defined by L = 107/3 and vy, = 8, and
we use N, = 128m, N, = 512m, where m is a parameter
dictating the resolution. We have already demonstrated the



Fig. 10. Distribution function f(z, v, t) at ¢ = 200 for the PPM scheme (left)
and the new scheme (right) with grid resolutions (N, Ny) = (128m, 512m)
for m = 1 (top) and m = 4 (bottom). Note that the degree of detail in the
PPM solution is comparable to the detail in the solution from the new scheme
with four times less resolution. A quadratic (cf. linear) color mapping was used
in these plots to accentuate the details in the trapping region.
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Fig. 11. Electric field E(z,t) at t = 200 for PPM scheme (left) and new
scheme (right). The result from a highly resolved computation with m = 16
is also displayed for reference. Note that the new scheme better captures the
phase at all resolutions.

need to include viscosity into the approximation, and we
have demonstrated that the linear artificial viscosity is not
satisfactory. As a result we present results for this bump-on-
tail problem only for the new proposed scheme and the PPM
scheme for comparison. Note that the computations have been
performed with the other schemes, and the results present no
surprises. Figure 10 shows computed approximations of the
phase space distribution function at ¢ = 200 for m = 1
and m = 4 using the two schemes. Both approximation
techniques capture the trapping region near v = 3, but the new
approximation (right) achieves significantly higher resolution
of small features. In fact, the coarser results (m = 1) for
the new scheme (top right) capture roughly the same set of
features as the PPM scheme with four times as much resolution
(m = 4, bottom left).

Notice further that the position of the trapped region is
quite well located even at m = 1 for the new scheme, while
for PPM it is moving slightly too fast. This phase error can
also be investigated via the electric field which is shown in
Figure 11 for four resolutions, m = 1,2,4,16. The final
resolution is included as a reference and is intended to be
a close approximation to the exact electric field. Here we see

that the PPM scheme has accumulated a significant phase error
for low resolution and is converging to the reference solution
quite slowly. On the other hand the new scheme produces quite
close results even at low resolution, and the higher resolutions
are seen to be nicely convergent.

VIII. CONCLUSIONS

In this paper we have discussed the application of high-order
finite-volume methods to the simulation of Vlasov systems.
The need for the explicit or implicit inclusion of some form
of artificial dissipation was demonstrated through a number of
model problems including Landau damping, the two-stream
instability, and the bump-on-tail instability. The standard meth-
ods used for comparison included high-order, linear artificial
viscosity and the non-linear piecewise parabolic method. We
introduced a new non-linear method that is designed to add
an upwind artificial viscosity when the solution is under-
resolved, but to transition smoothly to a high-order, centered
approximation for well-resolved regions of the flow. This
method is constructed specifically with Vlasov systems in
mind and leverages the specific type of non-linearities present
in that the system disallows genuine non-linear discontinuities
(i.e., shocks). The result is a scheme that behaves like a fourth-
order, centered scheme when the solution is well-resolved,
but adds an appropriate artificial dissipation as features in the
solution become too fine to be represented accurately. The
properties of this new scheme were demonstrated in relation
to the other schemes through a series of classical test problems.

Two remaining important advantages of this new scheme
deserve reiteration. First, the finite-volume method that lies
at the heart of our algorithms are inherently local, and so
parallelization is easily done. In fact, some computations
presented in this paper used up to 512 processors, and nearly
linear parallel scaling was observed. Second, the construction
of the new method is quite general and extends to orders higher
than fourth in a straightforward manner. That is to say, the
recipe in Section VI is easily extensible to construct non-linear
schemes of any even order that reduce to upwind schemes of
one order less.
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